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1  | INTRODUC TION

Humans engage in sophisticated social cognitive reasoning: we rea‐
son about unobservable mental states—that is, use our “theory of 
mind” (ToM; Gopnik & Wellman, 1994)—proactively, in order to pre‐
dict the actions and reactions of other people.

Indeed, functional magnetic resonance imaging (fMRI) studies 
of adults suggest that brain regions recruited for ToM reasoning 
(bilateral temporoparietal junction, precuneus, and prefrontal cor‐
tex; Carrington & Bailey, 2009) not only infer, but actively predict, 
mental states. For example, ToM brain regions respond more when 
processing unexpected actions of an agent, given priors about her 
mental states (Dungan, Stepanovic, & Young, 2016; Heil et al., 2019; 
Theriault & Young, 2017), and use a person's current emotion to pre‐
dict future emotional states (Thornton, Weaverdyck, & Tamir, 2019). 
These findings are consistent with a predictive coding framework 
(Koster‐Hale & Saxe, 2013), in which neural responses reflect the 
generation of predictions about a stimulus and the recognition of 

differences between these predictions and the observed stimulus 
(Clark, 2013; Friston & Kiebel, 2009; de Lange, Heilbron, & Kok, 
2018; Rao & Ballard, 1999).

Here, we use a repeated movie‐viewing paradigm to measure 
the development of predictive responses in ToM regions. During 
the second presentation of a movie, upcoming events are more pre‐
dictable, so neural responses reflecting predictive processing should 
occur earlier during the second viewing (Figure 1). Initial evidence 
from adults supports this hypothesis: Baldassano et al. (2017) mea‐
sured neural responses while adults listened to a narrative. Neural 
responses to the narrative shifted earlier in time in adults who had 
previously watched a movie version of the narrative, suggesting that 
these participants anticipated upcoming events during the second 
(audio) presentation. Intriguingly, the brain regions that showed pre‐
dictive responses correspond to those canonically recruited for ToM 
reasoning (Baldassano et al., 2017).

This study provides evidence for age‐related change in these pre‐
dictive responses in ToM brain regions in early childhood. Children's 
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Abstract
When we watch movies, we consider the characters’ mental states in order to un‐
derstand and predict the narrative. Recent work in functional magnetic resonance 
imaging (fMRI) uses movie‐viewing paradigms to measure functional responses in 
brain regions recruited for such mental state reasoning (the theory of mind [“ToM”] 
network). Here, two groups of young children (n = 30 3–4 years old, n = 26 6–7 years 
old) viewed a short animated movie twice while undergoing fMRI. As children get 
older, ToM brain regions were recruited earlier in time during the second presenta‐
tion of the movie. This “narrative anticipation” effect is specific: there was no such 
effect in a control network of brain regions that responds just as robustly to the 
movie (the “Pain Matrix”). These results complement prior studies in adults that sug‐
gest that ToM brain regions play a role not just in inferring, but in actively predicting, 
other people's thoughts and feelings, and provide novel evidence that as children get 
older, their ToM brain regions increasingly make such predictions.
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ToM changes dramatically between ages 3 and 7 years (e.g., Wellman 
& Liu, 2004). However, children younger than 6 years of age are un‐
derstudied with fMRI due to the demands of typical fMRI exper‐
iments. In this study, two groups of young children (ages 3–4 and 
6–7 years old) watched “Partly Cloudy” (Reher & Sohn, 2009) twice 
while undergoing fMRI. This movie is short, engaging, and evokes 
responses in ToM brain regions, as well as a functionally distinct net‐
work of brain regions that responds to physical or bodily sensations 
(the “Pain Matrix”; Richardson, Lisandrelli, Riobueno‐Naylor, & Saxe, 
2018). We measured the extent to which the response time course in 
ToM brain regions shifted earlier in time during the second viewing, 
indicating anticipation of the characters’ mental states. We tested if 
anticipatory responses correlated with age and behavioral ToM rea‐
soning, and conducted similar analyses in the Pain Matrix to deter‐
mine if such anticipation is specific to ToM brain regions.

2  | METHODS

2.1 | Participants

Thirty 3.5‐ to 4‐year‐olds (M (SD) = 4 (0.39) years; 17 females, two 
left‐handed/one ambidextrous) and twenty‐six 6‐ to 7‐year‐olds 
(M (SD)  =  6.5 (0.27)  years; 14 females, six left‐handed/one ambi‐
dextrous) participated in the study. An additional six children were 
recruited to participate and excluded from all analyses for not com‐
pleting the study. Children were recruited from the local community; 
6‐ to 7‐year‐old children were initially recruited for a longitudinal 
study. Parent/guardian consent and child assent was obtained prior 
to participation. Recruitment and experiment protocols were ap‐
proved by the Committee on the Use of Humans as Experimental 
Subjects at the Massachusetts Institute of Technology.

The sample size was determined by the number of participants 
who completed two runs of a movie‐viewing experiment included 
in two separate studies (one for 3‐ to 4‐year‐olds, Richardson et 
al., 2018), one for 6‐year‐olds, Richardson, Gweon, Alves, & Saxe, 
in prep) that were designed and conducted to test hypotheses dis‐
tinct from those tested here. Data from 3‐ to 4‐year‐old participants 

(first movie viewing only) were included in a previous publication 
(Richardson et al., 2018).

2.2 | Behavioral battery

All participants completed a ToM behavioral battery after the fMRI 
scan, which involved listening to a story and answering 34 prediction 
(n  =  20) and explanation (n  =  14) questions about the beliefs, de‐
sires, and emotions of the characters, in the context of helping them 
find their snacks. This task taps a range of ToM concepts and asks 
children to reason about moral blameworthiness and second‐order 
false‐beliefs. In a prior study, performance on this task correlated 
with responses in ToM brain regions to social scenes during a natu‐
ralistic movie (Richardson et al., 2018). This task is publicly available 
(https​://osf.io/G5ZPV/​; https​://doi.org/10.17605/​OSF.IO/G5ZPV​; 
ARK: c7605/osf.io/g5zpv).

2.3 | Behavioral data analysis

Each child's ToM behavioral session was video recorded and coded 
offline. ToM behavioral performance was calculated as the num‐
ber of questions answered correctly divided by the total number of 
questions asked. An additional five control items were asked to en‐
sure that children were paying attention; after ensuring all children 
answered these questions correctly, these items were not further 
analyzed.

Research Highlights
•	 When viewing a movie for the second time, neural re‐

sponses to the movie occur earlier, reflecting narrative 
anticipation.

•	 From age 3 to 7 years, brain regions associated with 
“theory of mind” reasoning show increasing narrative 
anticipation.

F I G U R E  1   Narrative anticipation effect. Visualization of theory of mind (ToM) brain regions recruited for ToM reasoning during first 
(purple) and second (red) viewing of the movie “Partly Cloudy” (Reher & Sohn, 2009), and the average response timecourse from the ToM 
network per movie viewing (response magnitude on the y‐axis, time in the movie on the x‐axis). Both visualizations show actual data from 
6–7 year old participants in this study (n = 26). The “narrative anticipation” effect is visible in the timecourse data: the response in the ToM 
network is shifted earlier during the second presentation of a movie stimulus (red; relative to purple). See Figure S1 for similar visualizations 
in younger children and in the Pain Matrix, and Figure S3 for results of whole‐brain random effects analyses per age group and movie 
viewing

https://osf.io/G5ZPV/
https://doi.org/10.17605/OSF.IO/G5ZPV
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2.4 | FMRI experiment

Participants watched a silent version of “Partly Cloudy,” 
(Reher & Sohn, 2009) a 5.6‐min animated movie, twice. A  
short description of the plot can be found online (https​://www.pixar.com/
partly-cloud​y#partly-cloudy-1). This movie has previously been shown 
to drive neural responses in ToM brain regions in children (Richardson 
et al., 2018). The movie was preceded by 10 s of rest, and there was 
a short (<1 min) break between the two viewings during which time 
the experimenter briefly checked in with the participant. Participants 
were instructed to watch the movie and remain still. Children older 
than age five completed an additional fMRI experiment prior to view‐
ing the movie, which involved listening to stories.

2.5 | FMRI data collection

All participants practiced in a “mock scan” prior to the real fMRI 
scan. Mock scan sessions reduce participant motion and help young 
children become comfortable in the scanner environment.

During the mock and real scans, participants could hold a large, 
plush stuffed animal. Anecdotally, this stuffed animal helped chil‐
dren relax, reduced fidgeting with hands, and prevented children 
from touching their faces. Two other strategies employed to reduce 
participant motion were (a) packing the space between the child's 
head and the coil with soft foam pillows, and (b) having an experi‐
menter remain by the child's foot, who tapped them on the leg if they 
started to move. This experimenter also ensured that participants 
were awake and attending to the movie. A second experimenter re‐
mained at the control console, and communicated with the child via 
a two‐way microphone.

Whole‐brain structural and functional MRI data were acquired 
on a 3‐Tesla Siemens Tim Trio scanner located at the Athinoula A. 
Martinos Imaging Center at MIT. Children under age 5 years used one 
of two custom 32‐channel phased‐array head coils made for younger 
(n = 3, M (SD) = 3.91 (0.42) years) or older (n = 27, M (SD) = 4.05 (0.39) 
years) children (Keil et al., 2011); these children used the smallest 
coil that they fit in comfortably. Older children used the standard 
Siemens 32‐channel head coil. T1‐weighted structural images were 
collected in 176 interleaved sagittal slices with 1 mm isotropic voxels 
(GRAPPA parallel imaging, acceleration factor of 3; standard coil: field 
of view  (FOV): 256 mm; pediatric coils: FOV: 192 mm). Functional 
data were collected with a gradient‐echo echo‐planar imaging (EPI) 
sequence sensitive to Blood Oxygen Level Dependent contrast in 32 
interleaved near‐axial slices with 3 mm isotropic voxels and a 10% 
slice gap, aligned with the anterior/posterior commissure, and cov‐
ering the whole brain (EPI factor: 64; TR: 2 s, TE: 30 ms, flip angle: 
90°). All functional data were subsequently upsampled in normalized 
space to 2 mm isotropic voxels. Prospective acquisition correction 
was used to adjust the positions of the gradients based on the par‐
ticipant's head motion one TR back (Thesen, Heid, Mueller, & Schad, 
2000). One hundred and sixty‐eight volumes were acquired in each 
run; the two movie viewings were collected across two runs. Four 
dummy scans were collected to allow for steady‐state magnetization.

2.6 | FMRI analysis

FMRI data were analyzed in SPM8 (http://www.fil.ion.ucl.ac.uk/
spm) and custom software written in Matlab (MathWorks, Natick, 
MA) and R (https​://www.r-proje​ct.org/). Functional images were 
registered to the first image of the run; that image was registered 
to each participant's anatomical image, and each participant's 
anatomical image was normalized to the Montreal Neurological 
Institute (MNI) template. This enabled us to use group regions 
of interest (ROIs) and hypothesis spaces previously created in 
adult datasets and used to study responses in children. Previous 
research has suggested that anatomical differences between 
children as young as 7  years are small relative to the resolution 
of fMRI data, which supports usage of a common space between 
adults and children of this age (for similar procedures with chil‐
dren under age seven, see Cantlon & Li, 2013; Richardson et al., 
2018); for methodological considerations, see Burgund et al., 
2002). Registration of each individual's brain to the MNI template 
was visually inspected, including checking the match of the corti‐
cal envelope and internal features like the AC‐PC and major sulci. 
All data were smoothed using a Gaussian filter (5 mm kernel), and 
underwent SPM's image scaling.

Artifact timepoints were identified via the ART toolbox (https​://
www.nitrc.org/proje​cts/artif​act_detec​t/; Whitfield‐Gabrieli, Nieto‐
Castanon, & Ghosh, 2011) as timepoints for which there was (a) more 
than 2 mm composite motion relative to the previous timepoint or 
(b) a fluctuation in global signal that exceeded a threshold of three 
standard deviations from the mean global signal. Participants would 
have been excluded if one‐third or more of the timepoints collected 
were identified as artifact timepoints; zero participants met this cri‐
terion. The number of artifact timepoints positively correlated with 
mean translation (r(54) = 0.38, p = 0.004). Overall, amount of mo‐
tion was minimal (mean translation in non‐artifact timepoints: 1st 
viewing (V1): Young children: M (SD) = 0.06 (0.03) mm; older chil‐
dren: M (SD)  =  0.07 (0.03) mm; 2nd viewing (V2): Young children: 
M (SD) = 0.06 (0.03) mm; older children: M (SD) = 0.08 (0.04) mm). 
The average number of artifact timepoints did not differ between 
older and young children in either viewing (V1: Young children: M 
(SD)  =  9.3 (10.8); Older children: M (SD)  =  13.4 (15.4); V2: Young 
children: M (SD) = 13.3 (13.3); Older children: M (SD) = 13.4 (13.3); 
ps  >  0.2), and the  average number of artifact timepoints was not 
correlated with age (spearman correlation: rs(54) = 0.13, p = 0.32) or 
ToM behavioral performance (kendall tau correlation: rk(54) = −0.06, 
p = 0.5). Number of artifact timepoints did not differ between movie 
viewings in either age group (Young children: t(55.6) = −1.3, p = 0.20; 
Older children: t(49) = −0.01, p = 0.99). See Figure S2 for a visualiza‐
tion of participant motion by movie viewing and age group. Despite 
amount of motion being uncorrelated with age, and therefore likely 
not driving developmental effects within the child sample, we in‐
cluded number of motion artifact timepoints as a covariate in all 
analyses. Because this measure was not normally distributed, spear‐
man correlations were used when including amount of motion as a 
covariate in partial correlations.

https://www.pixar.com/partly-cloudy#partly-cloudy-1
https://www.pixar.com/partly-cloudy#partly-cloudy-1
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.r-project.org/
https://www.nitrc.org/projects/artifact_detect/
https://www.nitrc.org/projects/artifact_detect/
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For the purpose of creating Figure 1, whole‐brain random ef‐
fects analyses were used to show the main contrast of interest (ToM 
events  >  Pain events; events described in Richardson et al., 2018 
and https​://openn​euro.org/datas​ets/ds000228) per age group and 
movie viewing. These analyses were corrected for multiple compari‐
sons by estimating the false‐positive rate via 5,000 Monte Carlo per‐
mutations using the SnPM toolbox for SPM5 (http://www.fil.ion.ucl.
ac.uk/spm/softw​are/spm5/; p < 0.05). See Figure S3 for visualization 
of results for each age group and movie viewing.

For the main analyses, ROI analyses were conducted using ToM 
and “Pain Matrix” group ROIs. The “Pain Matrix” was selected as a 
control network for the current analyses, as previous work has found 
that, like the ToM network, responses in these regions are driven 
by this movie (Richardson et al., 2018). These ROIs were previously 
created in an independent group of adults, based on responses to 
the “Partly Cloudy” movie (n = 20). The ROI creation procedure is de‐
scribed in a prior publication (Richardson et al., 2018), and the ROIs 
are publicly available for download (https​://openn​euro.org/datas​
ets/ds000228). In two prior studies, the magnitude of response in 
these ToM ROIs to social scenes in naturalistic movies correlated 
with behavioral measures of social reasoning in children, even when 
controlling for age (Richardson, 2018; Richardson et al., 2018).

All timecourse analyses were conducted by extracting the pre‐
processed timecourse from each voxel per group ROI (per movie 
viewing). We applied nearest neighbor interpolation over artifact 
timepoints, and regressed out two kinds of nuisance covariates to 
reduce the influence of motion artifacts: (a) motion artifact time‐
points, and (b) five principle component analysis‐based noise re‐
gressors generated using CompCor within individual subject white 
matter masks (Behzadi, Restom, Liau, & Liu, 2007). White matter 
masks were eroded by two voxels in each direction, in order to avoid 
partial voluming with cortex. CompCor regressors were defined 
using scrubbed data (e.g., artifact timepoints were identified and in‐
terpolated over prior to running CompCor). The residual timecourses 
were then high‐pass filtered (threshold: 1 cycle/100 s). Timecourses 
from all voxels within an ROI were averaged, creating one time‐
course per group ROI, and artifact timepoints were subsequently 
excluded (NaNed). ROI timecourses within each network were aver‐
aged, creating one timecourse per network, per movie viewing and 
participant.

We then calculated the correlation between each participant's 
timecourses during the first and second viewings for the ToM and 
pain network, separately, in two temporal shifting schemes. In the 
“no shift” scheme, we calculated the correlation between timepoints 
1–168 in the first and second viewings. In the “anticipation” scheme, 
we calculated the correlation between timepoints 2–168 in the first 
viewing and timepoints 1–167 in the second viewing. Correlation 
values were z‐scored and compared directly by calculating the “an‐
ticipation”—“no shift” correlation difference, in order to determine 
if the timecourses were more correlated under the “anticipation” 
scheme.

In each network and age group, we used t‐tests to determine 
if the “anticipation”—“no shift” difference score was significantly 

positive, suggesting that the brain regions in that network and age 
group anticipated events of the movie during the second viewing. 
We additionally used t‐tests to directly compare the size of this 
“anticipation effect” across age groups, and used partial correlation 
tests to determine if the anticipation effect increased with age and 
a behavioral measure of ToM reasoning, controlling for participant 
motion. Finally, we used a linear mixed‐effect model fit by maximum 
likelihood to test for main effects of age, network, and motion, and 
for an age × network interaction, in order to test the specificity of the 
effect (subject identifier was included as a random effect). The data 
used for analyses are available for download (https​://osf.io/5jvwf/​).

3  | RESULTS

3.1 | Behavioral results

All children completed a ToM behavioral battery after the scan, 
which involved listening to a story and answering prediction and ex‐
planation questions that require reasoning about the mental states 
of the characters (see Methods section and https​://osf.io/G5ZPV/​). 
ToM performance correlated with age (rs(53) = 0.81, p = 1.2 × 10−13), 
and older children performed significantly better than younger  
children (t(43.4) = 12.4, p = 8.2 × 10−16); see Figure S4a.

3.2 | FMRI results

As expected given the identical movie stimulus across viewings, the 
response timecourses were positively correlated across the two 
viewings in both age groups and cortical networks (“no shift” cor‐
relation: ToM: Young: M (SE) r = 0.11 (0.02); t(29) = 4.8, p = 4.8 × 10−5; 
Older: M (SE) r = 0.13 (0.02); t(25) = 5.9, p = 4.2 × 10−6; Pain: Young: 
M (SE) r = 0.19 (0.03); t(29) = 5.9, p = 2.0 × 10−6; Older: M (SE) r = 0.25 
(0.03); t(25) = 9.4, p = 1.2 × 10−9; see Figure S1. The “no shift” cor‐
relation between the two timecourses was uncorrelated with age in 
both networks (ToM: r(53) = 0.14, p = 0.31; Pain: r(53) = 0.13, p = 0.35; 
partial Pearson correlations including motion as a covariate), and did 
not differ between young and older children (ToM: t(53.6) = 0.78, 
p = 0.22; Pain: t(53.5) = 1.5, p = 0.07; one‐tailed t‐tests).

In theory, temporally shifting one timecourse such that the two 
timecourses are no longer temporally aligned should reduce the cor‐
relation between them. In contrast, if a cortical network generates 
predictive responses to a familiar narrative, then shifting its response 
timecourse during the second viewing to be temporally earlier might 
increase the correlation between the two timecourses. We measured 
the anticipation effect as the “anticipation”—“no shift” correlation 
difference in each network, and tested for main effects of age group 
(3–4 years old vs. 6–7 years old) and network (ToM vs. Pain), as well 
as an age group × network interaction, controlling for motion. There 
was a significant age group  ×  network interaction, such that the 
anticipation effect in the ToM network was larger in older children 
(b = 0.85, t = 2.3, p = 0.03). The main effects of network (b = −0.26, 
t = −1, p = 0.31), age group (b = −0.22, t = −0.84, p = 0.40), and mo‐
tion (b = 0.05, t = 0.55, p = 0.58) were not significant. Using age as 

https://openneuro.org/datasets/ds000228
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
https://openneuro.org/datasets/ds000228
https://openneuro.org/datasets/ds000228
https://osf.io/5jvwf/
https://osf.io/G5ZPV/
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a continuous variable yielded the same pattern of results, but the 
age × network interaction was marginal (b = 0.34, t = 1.8, p = 0.08; 
other bs < 0.15, ps > 0.4; see Figures 2a and S5).

In 3‐ to 4‐year‐olds, temporally misaligning the ToM timecourses 
from the first and second viewings reduced the correlation between 
them (anticipation effect M (SE)  =  −0.03 (0.02); one‐tailed t‐test 
against zero: t(29) = −1.8, p = 0.04). In contrast, in 6‐ to 7‐year‐olds, 
timecourses in the ToM network were marginally more correlated 
when misaligned into the anticipation scheme (anticipation effect 
M (SE) =  0.025 (0.02), one‐tailed t‐test against zero: t(25) =  1.54, 
p = 0.07). The anticipation effect in the ToM network was signifi‐
cantly larger in older children than in younger children (two‐tailed t‐
test: t(53) = 2.3, p = 0.02). Across all children, the anticipation effect 
(“anticipation”—“no shift” difference) in ToM brain regions positively 
correlated with age (r(53) = 0.28, p = 0.04; partial Pearson correla‐
tion including motion as a covariate), but not with ToM behavior 
(τ(53) = 0.18, p = 0.2; partial Kendall correlation including motion as 
a covariate); see Figure S4b.

The anticipation effect in the Pain Matrix was not significantly 
positive in older (anticipation effect M (SE) r =  −0.02 (0.02), one‐
tailed t‐test: t(25) = −1.4, p = 0.9) or younger (M (SE) r = −0.01 (0.01), 
one‐tailed t‐test: t(29) = −0.43, p = 0.7) children, and did not change 
with age (r(53) = −0.08, p = 0.56, includes motion as covariate; two‐
tailed t‐test comparing age groups: t(51) = −0.84, p = 0.41). The antic‐
ipation effect in the ToM network was significantly more correlated 
with age than the anticipation effect in the Pain Matrix (one‐tailed 
r‐test: z = 1.9, p = 0.03).

Post hoc exploratory analyses confirmed that the anticipation 
effect was most pronounced at a time lag of 2 s (Figure S5), and that 
the focus on ToM brain regions did not result in missing similar antic‐
ipation effects elsewhere in the brain (Figures S6 and S7). The same 
pattern of results was obtained in post hoc analyses of the response 

pattern, rather than univariate response magnitude (Figure S8). See 
Supporting Information for exploratory analyses of repetition sup‐
pression in each network across the two viewings (Figure S9) and of 
hippocampal responses at event boundaries (Figure S10).

4  | DISCUSSION

Young children watched a short animated film twice while undergo‐
ing fMRI scanning. Between ages 3 and 7  years, we observed in‐
creasing predictive neural responses to the second viewing. Thus 
using a repeated naturalistic movie‐viewing paradigm allowed us to 
measure developmental change in neural predictive processing in 
very young children. This kind of paradigm is promising for meas‐
uring continued development of predictive responses in childhood, 
and for understanding the relationship between the development 
of neural predictive responses and conceptual knowledge in ToM.

In adults, prior knowledge of a narrative leads to earlier activa‐
tion in a group of brain regions, including temporo‐parietal junction, 
precuneus, and medial prefrontal cortex (Baldassano et al., 2017). In 
the current data, the narrative anticipation effect increased with age 
in a similar set of regions (here called ToM regions), and not in a con‐
trol network that is similarly driven by viewing the movie (here called 
the Pain Matrix). What cognitive process underlies the anticipation 
effect in these regions? There are multiple possibilities that cannot 
be distinguished by the current data.

We suggest that anticipatory activity is specifically related to 
predicting and understanding the characters’ mental states. In 
most naturalistic human‐created narratives, characters’ desires, 
expectations, and emotions drive their actions and the narrative. 
Anticipation effects are observed in brain regions that are most ac‐
tive when the stimulus evokes consideration of characters' mental 

F I G U R E  2   Functional magnetic resonance imaging results. (a) Bar plot shows difference score on the y‐axis by age group (3–4 year 
olds in light colors, 6–7 year olds in dark colors) and network (theory of mind [ToM] network in reds, Pain Matrix in greens). The difference 
score is the z‐scored correlation between the response timecourses (within each network) during the first and second viewings under the 
“anticipation” scheme (i.e., timepoints 2:167 during the first viewing to timepoints 1:168 during the second viewing), minus the z‐scored 
correlation between the same response timecourses under the “no shift” scheme (i.e., timepoints 1:168 during the first and second 
viewings). A positive difference score indicates that the timecourses were more correlated when temporally earlier timepoints during the 
second viewing were aligned with later timepoints in the first viewing. The asterisk indicates a significant age‐group × network interaction 
(p < 0.05) such that the anticipation effect in the ToM network was significantly larger in older children. (b) Scatterplot shows the same 
difference score (y‐axis) by age as a continuous variable (x‐axis). The narrative anticipation effect increased with age in the ToM network 
(controlling for motion: r(53) = 0.28, p = 0.04), but not the Pain Matrix (controlling for motion: r(53) = −0.08, p = 0.56)
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states (e.g., Carrington & Bailey, 2009), and the magnitude and selec‐
tivity of activity in these brain regions have been related to children's 
ToM reasoning (Richardson et al., 2018).

However, an alternative is that these brain regions are involved 
more generally in representing events at long temporal scales, in‐
dependent of event content (Baldassano et al., 2017; Jacoby & 
Fedorenko, 2018). Furthermore, anticipation effects measured over 
the whole timecourse of movie viewing could reflect looking forward 
to as yet unseen events, or faster comprehension of ongoing events, or 
both; relatedly, anticipation effects could reflect earlier predictive pro‐
cessing, or reduced prediction error, or both. To distinguish between 
these hypotheses, it may be helpful to formalize these alternatives in 
computational terms, to use stimuli in which content and temporal 
structure are un‐confounded, and to collect more data per participant.

Thus, this study motivates several questions for future research. 
In particular, what are the cognitive and behavioral consequences of 
more neural anticipation of narratives? We did not find a correlation 
with our measure of ToM behavior in the current sample; future exper‐
iments could test other behavioral measures of narrative comprehen‐
sion and mentalistic prediction. Naturalistic movie‐viewing paradigms 
are a promising approach for addressing these questions, and for un‐
derstanding how the developing brain makes predictions about minds.
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